Inhibition of the bacterial heme oxygenases from Pseudomonas aeruginosa and Neisseria meningitidis: novel antimicrobial targets.

نویسندگان

  • Lena M Furci
  • Pedro Lopes
  • Suntara Eakanunkul
  • Shijun Zhong
  • Alexander D MacKerell
  • Angela Wilks
چکیده

The final step in heme utilization and iron acquisition in many pathogens is the oxidative cleavage of heme by heme oxygenase (HO), yielding iron, biliverdin, and carbon monoxide. Thus, the essential requirement for iron suggests that HO may provide a potential therapeutic target for antimicrobial drug development. Computer-aided drug design (CADD) combined with experimental assays identified small-molecule inhibitors of the Neisseria meningitidis HO (nm-HO). CADD virtual screening applied to 800 000 compounds identified 153 for biological assay. Several of the compounds were shown to have KD values in the micromolar range for nm-HO and the Pseudomonas aeruginosa HO (pa-HO). The compounds also inhibited the growth of P. aeruginosa as well as biliverdin formation in E. coli cells overexpressing nm-HO. Thus, CADD combined with experimental analysis has been used to identify novel inhibitors of the bacterial heme oxygenases that can cross the cell membrane and specifically inhibit HO activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homologues of neisserial heme oxygenase in gram-negative bacteria: degradation of heme by the product of the pigA gene of Pseudomonas aeruginosa.

The oxidative cleavage of heme to release iron is a mechanism by which some bacterial pathogens can utilize heme as an iron source. The pigA gene of Pseudomonas aeruginosa is shown to encode a heme oxygenase protein, which was identified in the genome sequence by its significant homology (37%) with HemO of Neisseria meningitidis. When the gene encoding the neisserial heme oxygenase, hemO, was r...

متن کامل

Effect of environment on sensitivity of Neisseria gonorrhoeae to Pseudomonas aeruginosa bacteriocins.

The effect of environmental variation on the susceptibility of Neisseria gonorrhoeae to pyocin produced by Pseudomonas aeruginosa was examined. Susceptibility to at least one pyocin was demonstrated in strains of N. gonorrhoeae (99%), N. meningitidis (35%), and N. lactamica (47%). The degree of sensitivity to pyocin displayed by N. gonorrhoeae was affected by varying the pH of the growth enviro...

متن کامل

REP code: defining bacterial identity in extragenic space.

Through the analysis of 57 bacterial genomes we have detected repetitive extragenic palindromic DNA sequences (REPs) in 11 species. For a sequence to be considered as REP, the following criteria should be met: (i) It should be extragenic, (ii) palindromic, (iii) of a length between 21 and 65 bases and (iv) should constitute more than 0.5% of the total extragenic space. Species-specific REPs hav...

متن کامل

Antibacterial performance of MELITININ - BMAP27 hybrid peptide against Staphylococcus aureus and Pseudomonas aeruginosa strains

Abstract Background and purpose: Multiple drug-resistant (MDR) bacterial strains have spread in different parts of hospitals. The aim of this study was to design and synthesize an effective hybrid peptide by combining different parts of two peptides to achieve the highest antibacterial activity and its inhibitory effect against Staphylococcus aureus and Pseudomonas aeruginosa strains. Materia...

متن کامل

Analysis of the PilQ secretin from Neisseria meningitidis by transmission electron microscopy reveals a dodecameric quaternary structure.

PilQ is a member of the secretin family of outer membrane proteins and is specifically involved in secretion of type IV pili in Neisseria meningitidis, Neisseria gonorrhoeae, and Pseudomonas aeruginosa. The quaternary structure of PilQ from N. meningitidis was analyzed by transmission electron microscopy by using a negative stain. Single particle averaging was carried out with a total data set ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of medicinal chemistry

دوره 50 16  شماره 

صفحات  -

تاریخ انتشار 2007